Dynamics and thermodynamics of supercooled liquids and glasses from a model energy landscape
نویسندگان
چکیده
The dynamics and thermodynamics of a model potential-energy surface are analyzed with regard to supercooling and glass formation. Relaxation is assumed to be mediated by pathways that connect groups of local minima. The dynamics between these groups is treated via transition state theory using appropriate densities of states consistent with the thermodynamics of the model, with a general expression for the free energy barrier. Nonergodicity is admitted by successive disconnection of regions that no longer contribute to the partition function as a function of the observation time scale. The model exhibits properties typical of supercooled liquids and glasses spanning the whole range of ‘‘fragile’’ and ‘‘strong’’ behavior. Non-Arrhenius dynamics, characteristic of ‘‘fragile’’ glass formers, are observed when the barriers to relaxation increase as the potential energy decreases, but only if the observation time scale is long enough. For a fixed observation time, fragility generally increases as the free energy barriers decrease and vibrational frequencies increase. We associate higher vibrational frequencies with systems that have more local minima, and hence when the model exhibits dynamic fragility we usually see a large change in the heat capacity at the glass transition. However, in some regions of parameter space the expected correlations between dynamics and thermodynamics are not present.
منابع مشابه
Theory of Supercooled Liquids and Glasses: Energy Landscape and Statistical Geometry Perspectives
متن کامل
Energy landscapes, ideal glasses, and their equation of state
Using the inherent structure formalism originally proposed by Stillinger and Weber @Phys. Rev. A 25, 978 ~1982!#, we generalize the thermodynamics of an energy landscape that has an ideal glass transition and derive the consequences for its equation of state. In doing so, we identify a separation of configurational and vibrational contributions to the pressure that corresponds with simulation s...
متن کاملMetastable states as a key to the dynamics of supercooled liquids
Computer simulations of a model glass-forming system are presented, which study the correlation between the dynamics in real space and the topography of the potential energy landscape. This analysis clearly reveals that in the supercooled regime the dynamics is strongly influenced by the presence of deep valleys in the energy landscape, corresponding to long-lived metastable amorphous states. W...
متن کاملBarrier Softening near the onset of Non-Activated Transport in Supercooled Liquids: Implications for Establishing Detailed Connection between Thermodynamic and Kinetic Anomalies in Supercooled Liquids
According to the Random First Order Transition (RFOT) theory of glasses, the barriers for activated dynamics in supercooled liquids vanish as the temperature of a viscous liquid approaches the dynamical transition temperature from below. This occurs due to a decrease of the surface tension between local meta-stable molecular arrangements much like at a spinodal. The dynamical transition thus re...
متن کاملSaddles in the energy landscape probed by supercooled liquids.
We numerically investigate the supercooled dynamics of two simple model liquids exploiting the partition of the multidimensional configuration space in basins of attraction of the stationary points (inherent saddles) of the potential energy surface. We find that the inherent saddle order and potential energy are well-defined functions of the temperature T. Moreover, by decreasing T, the saddle ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001